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Abstract

It is shown how one can do symplectic reduction for locally conformal symplectic manifolds,
especially with an action of a Lie group. This generalizes well-known procedures for symplectic
manifolds to the slightly larger class of locally conformal symplectic manifolds. The whole setting
is very conformally invariant. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The geometry of locally conformal symplectic (l.c.s. for short) structures generalizes the
symplectic geometry. Such structures occur naturally in the theory of Jacobi manifolds,
as any even-dimensional leaf of the distinguished foliation of a Jacobi manifold is l.c.s.,
cf. [2]. In particular, any transitive even-dimensional Jacobi manifold is actually an l.c.s.
manifold. The l.c.s. manifolds may be regarded as natural phase spaces in the Hamiltonian
mechanics [8]. For instance, in [9], the symmetry of the Lyapunov spectrum in locally
conformal Hamiltonian systems is studied. The authors of [9] present several examples and
show that Gaussian isokinetic dynamics, Nosé–Hoovers dynamics and other systems can
be viewed as locally conformal Hamiltonian systems.
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The aim of this note is to show that, in regular cases, the symplectic reduction is possible
for l.c.s. manifolds. The most abstract reduction principle states that every coisotropic
submanifold of a symplectic manifold is foliated by isotropic leaves and if the leaf space is
a manifold it carries again a symplectic structure. In the paper of Marsden and Weinstein
[7], it has been formalized the fact that if ann-dimensional symmetry group acts on a
Hamiltonian system, then the number of degrees of freedom can be reduced byn, and the
dimension of the phase space is reduced by 2n (the position and the momentum coordinates).
We show that this is still true for l.c.s. manifolds. Moreover, the reduction process preserves
the conformal equivalence class of an l.c.s. structure. An open problem is how to treat
singular reductions (cf. [1]) in the l.c.s. case.

2. Locally conformal symplectic manifolds

For a closed 1-formω ∈ Ω1(M) and a vector fieldX ∈ X(M)we define dω : Ω∗(M) →
Ω∗+1(M) by dωα := dα+ω∧α, andLωX : Ω∗(M) → Ω∗(M) byLωXα := LXα+ω(X)α.
The well-known formulas dω dω = 0, LωXL

ω
Y − LωYL

ω
X = Lω[X,Y ] , L

ω
X dω − dωLωX = 0,

LωXiY − iYL
ω
X = i[X,Y ] and dωiX + iX dω = LωX remain true. Moreover, one has the

derivation like formulas

dω1+ω2(α ∧ β)= dω1α ∧ β + (−1)|α|α ∧ dω2β,

L
ω1+ω2
X (α ∧ β)=L

ω1
X α ∧ β + α ∧ Lω2

X β.

An l.c.s. manifold is a triple(M,Ω,ω), whereΩ ∈ Ω2(M) is non-degenerate,ω ∈ Ω1(M)

is closed and dωΩ = 0. If dim(M) > 2, thenω is uniquely determined byΩ. Two l.c.s.
structures(Ω,ω) and(Ω ′, ω′) are called conformally equivalent (we will write(Ω,ω) ∼
(Ω ′, ω′)) if there exists a positive functiona such thatΩ ′ = (1/a)Ω andω′ = ω+(da/a) =
ω + d lna. Notice that, if dim(M) > 2, the second equation is a consequence of the first.

Suppose, we have a manifoldM, an open coveringU of M and on everyU ∈ U an
l.c.s. structure(ΩU, ωU), such that(ΩU, ωU)|U∩V ∼ (ΩV , ωV )|U∩V for all U,V ∈ U .
Then there exists, up to conformal equivalence, a unique l.c.s. structure(Ω,ω) onM with
(Ω,ω)|U ∼ (ΩU, ωU) for all U ∈ U . It can be constructed as follows. For every pairU ,
V ∈ U there exists a functionaUV : U ∩ V → R

+, such thatΩU |U∩V = (1/aUV)ΩV |U∩V
andωU |U∩V = ωV |U∩V +(daUV/aUV). Obviously, we haveaUVaVW = aUW onU∩V ∩W .
In other words,{aUV} is a 1-cocycle in thěCech-cohomology of the sheafC∞(·,R+). Since
this sheaf is fine, and hence acyclic, every cocycle is a coboundary, i.e. there exist functions
bU : U → R

+ with aUV = bV /bU onU ∩ V . Now one definesΩ|U := (1/bU )ΩU and
ω|U := ωU + (dbU/bU) [5].

By Diff ∞(M,Ω,ω) we denote the group of all diffeomorphismsM, which preserve
(Ω,ω) up to conformal equivalence. The corresponding Lie algebra of vector fields is

X(M,Ω,ω) = {X ∈ X(M) : LωXΩ = cXΩ for some locally constantcX},

cf. [4].
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C∞(M,R) becomes a Lie algebra with the following bracket

{f1, f2} := Ω(]dωf1, ]dωf2) = Lω]dωf2
f1 = −Lω]dωf1

f2.

Here ] denotes the inverse of[, where [ : TM ∼= T ∗M given byX 7→ iXΩ is a
canonical vector bundle isomorphism sinceΩ is non-degenerate. We have]dω{f1, f2} =
−[]dωf1, ]dωf2]. So

Ham(M,Ω,ω) := {]dωf : f ∈ C∞(M,R)}
is a subalgebra ofX(M,Ω,ω), and

H 0
dω(M) ↪→ C∞(M,R)

]dω→Ham(M,Ω,ω)

is, up to a sign, a central extension of Lie algebras. HereH ∗
dω(M) denotes the cohomology

with respect to the differential dω, especially

H 0
dω(M) = {f ∈ C∞(M,R) : dωf = 0}.

Note that if(Ω ′, ω′) ∼ (Ω,ω), i.e.Ω ′ = (1/a)Ω andω′ = ω + (da/a), then{f, g}′ =
(1/a){af,ag}. Moreover, one has{fg, h} = f {g, h} + {f, h}g − fgL]ωh.

3. Reduction for l.c.s. structures

We begin with the following general definition of reduction essentially due to Marsden
and Ratiu [6].

Definition. Let(M,Ω,ω)be an l.c.s. manifold, and let{·, ·}M be the corresponding bracket
onC∞(M,R). A pair(L,E), wherei : L ⊂ M is a submanifold andE is a vector subbundle
of TM|L, is said to be areductive structureif the following is fulfilled:
1. E ∩ TL is tangent to a foliation ofL whose leaves are the fibers of a submersionπ :
L → PL;

2. i∗ω(X) = 0 for anyX tangent to the fibers ofπ ;
3. for anyu, v ∈ C∞(M,R) such that du,dv vanish onEdω{u, v}M vanishes onE as

well.
Furthermore,(M,L,E) is called areducible tripleif there is an l.c.s. structure(Ω̄, ω̄) on
PL with the Poisson bracket{·, ·}PL such that for any localC∞ functionsf, g onPL, and
any local extensionsu, v of f ◦ π , g ◦ π , respectively, such that both dωu and dωv vanish
onE, one has the relation

{u, v}M ◦ i = {f, g}PL ◦ π.
(PL, Ω̄, ω̄) is then areduced l.c.s. manifold.

A standard reductive structure arises in the following situation. Let(M,Ω,ω) be an
l.c.s. manifold such that for a submanifoldi : L ⊂ M rank(i∗Ω) is constant. Then, it is
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apparent that for theΩ-orthogonal spaceTL⊥ of TL, TL⊥ ∩ TL is integrable. Hence, if the
resulting foliation is given by a submersionπ : L → PL andi∗ω vanishes onTL⊥∩TL then
(L,TL⊥∩TL) is a reductive structure. By Proposition 1 below we see that(M,L,TL⊥∩TL)
is a reducible triple as well since]Ann(TL⊥) = (TL⊥)⊥ = TL.

As in the symplectic and Poisson case [6], we have the following proposition.

Proposition 1. Let (M,Ω,ω) be an l.c.s. manifold and suppose(L,E) is a reductive
structure. Then(M,L,E) is a reducible triple if and only if

](AnnE) ⊂ TL + E. (1)

Moreover, if(M,Ω,ω) ∼ (M,Ω ′, ω′) then(PL, Ω̄, ω̄) ∼ (PL, Ω̄
′, ω̄′), i.e. the conformal

equivalence relation is preserved.

Proof. Assume that(PL, Ω̄, ω̄) is a reduced l.c.s. of(M,Ω,ω). Let x ∈ L, α ∈ AnnEx ,
andβ ∈ Ann(Ex + TxL) = (AnnEx) ∩ (AnnTxL). By (1) there isu ∈ C∞(M,R) such
dxu = α and du|E = 0. Now due to (2) dωx u = α and dωu vanishes onE. Likewise, we
choosev ∈ C∞(M,R) vanishing onL with dxv = β and dv|E = 0. Hence in view of (2)
dωx v = β and dωv vanishes onE. Consequently, by the definition of reducible triple, we
have

β(]α)= (dωx v)(]dωx u)

= (dxv)(]dωx u) = (L]dωx uv)(x) = {v, u}M(x) = {0, f }(π(x))PL = 0,

wheref ∈ C∞(PL,R) such thatu extendsf ◦ π . This gives Eq. (1).
Conversely, suppose Eq. (1) is fulfilled and letf, g ∈ C∞(PL,R). For fixedx ∈ L choose

extensionsu, v ∈ C∞(M,R) of f ◦ π , g ◦ π , respectively, such thatu(x) = v(x) = 0
and du|E = dv|E = 0. This yields d{u, v}M |E = dω{u, v}M |E = 0 and, consequently,
{u, v}M |L is constant along fibers. We let{f, g}PL(π(x)) := {u, v}M(x) which will ensure
that(M,L,E) is a reducible triple. The only thing to check is the independence of the choice
of u andv. If ũ also extendsf ◦ π with ũ(x) = 0 and dωũ|E = 0, we get(u− ũ)|L = 0.
Therefore, du = dũ onE + TL which, in view of Eq. (1) implies

{u, v}M(x) = (dωx u)(]dωx v) = (dωx ũ)(]dωx v) = {ũ, v}M(x).
By the antisymmetry, the definition is also independent of the choice ofv. The second
assertion is obvious. �

4. The moment mapping

Let G be a finite dimensional Lie group acting from the left onM. We will write lg :
M → M for the action of the elementg ∈ G. For the fundamental vector fieldsζX we
haveζ[X,Y ] = −[ζX, ζY ] and ζAd

g−1X = l∗gζX. In the sequel we will always assume that

G acts symplectically, i.e.lg ∈ Diff ∞(M,Ω,ω) for all g ∈ G. If G is connected this
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is equivalent toζX ∈ X(M,Ω,ω) for all X ∈ g, whereg is the Lie algebra ofG. Then
for everyg ∈ G there exists a positive functionag onM, such thatl∗gΩ = (1/ag)Ω and
l∗gω = ω+ (dag/ag). Obviously, we haveahg = ag(l

∗
gah). So we have a rightG-action on

C∞(M,R) given byg · f := ag(l
∗
gf ). If one differentiatesl∗gΩ = (1/ag)Ω with respect

to X ∈ g, one obtains(∂/∂t)|0aexp(tX) = ω(ζX) − cX. So the correspondingg-action on
C∞(M,R) is X · f = LωζXf − cXf . Moreover,]dω : C∞(M,R) → Ham(M,Ω,ω) is
equivariant, i.e.,]dω(agl∗gf ) = l∗g]dωf and]dω(LωζXf − cXf ) = [ζX, ]dωf ].

Proposition 2. LetG be a connected Lie group, and suppose theg-action is Hamiltonian,
i.e. ζX ∈ Ham(M,Ω,ω) for all X ∈ g. Let ψ̂ : g→ C∞(M,R) be a linear lift ofζ , i.e.
]dωψ̂(X) = ζX for all X ∈ g. Moreover, letψ : M → g∗ be defined by〈ψ(x),X〉 =
ψ̂(X)(x), whereX ∈ g andx ∈ M. Then the following conditions
1. ψ̂ is a homomorphism of Lie algebras,
2. ψ̂ is equivariant, i.e. ψ̂(Adg−1X) = agl

∗
gψ̂(X), for all g ∈ G,X ∈ g,

3. ψ̂ is infinitesimal invariant, i.e. ψ̂(−adYX) = LωζY ψ̂(X) for all X, Y ∈ g,
4. Ad∗

g−1ψ = agl
∗
gψ for all g ∈ G, and

5. −ad∗
Yψ = T ψ · ζY + ω(ζY )ψ for all Y ∈ g

are equivalent.

Proof. We haveψ̂(−adYX) = ψ̂([X, Y ]) and

LωζY ψ̂(X) = Lω
]dωψ̂(Y )

ψ̂(X) = {ψ̂(X), ψ̂(Y )}.

So (1) is equivalent to (3), and sinceG is connected (3) is equivalent to (2). Notice that
since the action is Hamiltonian we havecX = 0 and so (3) is really the infinitesimal
version of (2). Moreover, (4) is obviously equivalent to (5). Next we haveψ̂(−adYX)(x) =
〈−ad∗

Yψ(x),X〉, and

LωζY ψ̂(X)(x)=LζY ψ̂(X)(x)+ ω(ζY (x))ψ̂(X)(x) = LζY 〈ψ(x),X〉
+ω(ζY (x))〈ψ(x),X〉 = 〈Txψ · ζY (x),X〉 + 〈ω(ζY (x))ψ(x),X〉,

and thus (5) is equivalent to (3). �

A mappingψ as in Proposition 2 is called a moment mapping, and it is called equivariant
if the five equivalent conditions are satisfied.

Proposition 3. Letϕ : g→ Ham(M,Ω,ω) be an anti homomorphism of Lie algebras. If
H 2(g;H 0

dω(M)) = 0, whereH 0
dω(M) is considered as trivialg-module, then there exists

a lift ϕ̃ : g → C∞(M,R), i.e. ϕ̃ is a homomorphism of Lie algebras and]dω ◦ ϕ̃ = ϕ.
Moreover, if there exists a lift, then the set of all lifts is parameterized byH 1(g;H 0

dω(M)).

Proof. Let ϕ̄ : g→ C∞(M,R) be a linear lift ofϕ and set

c(X, Y ) := ϕ̄([X, Y ])− {ϕ̄(X), ϕ̄(Y )} ∈ H 0
dω(M).
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Then one easily showsδc = 0. SinceH 2(g;H 0
dω(M)) = 0 there existsb with δb = c, i.e.

c(X, Y ) = (δb)(X, Y ) = −b([X, Y ]). Now we defineϕ̃ : g → C∞(M,R) by ϕ̃(X) :=
ϕ̄(X)+ b(X). Then one immediately sees thatϕ̃ is a homomorphism of Lie algebras and a
lift of ϕ.

To see the second assertion, letϕ̃ denote a homomorphism of Lie algebras liftingϕ. All
other lifts are of the form̃ϕ + b for someb : g→ C∞(M,R). Since we have

{ϕ̃(X)+ b(X), ϕ̃(Y )+ b(Y )} = {ϕ̃(X), ϕ̃(Y )} = ϕ̃([X, Y ]),

we see that̃ϕ + b is a homomorphism of Lie algebras iffb([X, Y ]) = 0 for allX, Y ∈ g,
or equivalentlyδb = 0, i.e.b ∈ H 1(g;H 0

dω(M)). �

If g is semi-simple, then there always exists an equivariant moment mapping, since
H 2(g;H 0

dω(M)) = 0, by the second Whitehead lemma. Moreover, it is unique since
H 1(g;H 0

dω(M)) = 0, by the first Whitehead lemma.
If (M,Ω,ω) is an l.c.s. manifold which is not conformally equivalent to a symplectic

manifold, i.e.ω is not exact, then there always exists a unique equivariant moment mapping.
This is becauseH 0

dω(M) = 0 for non-exactω.
Suppose the l.c.s. structure is exact, i.e.Ω = dωθ , and the action preservesθ , i.e.LωζXθ =

cXθ for locally constant functionscX. Notice that this immediately impliesLωζXΩ = cXΩ.

Moreover,cX = 0 iff the action is Hamiltonian, and in this situation̂ψ(X) = −iζXθ is an
equivariant moment mapping.

5. Lie group actions and reduction

Let G be a finite dimensional Lie group acting symplectically on an l.c.s. manifold
(M,Ω,ω). Assume that we have an equivariant moment mappingψ . The vector fields
Z ∈ X(M) which areΩ-orthogonal to the orbits ofG span an involutive distribution
on M. Indeed, since we haveΩ(ζX,Z) = iZ dωψ̂(X) = LωZψ̂(X), this follows from
Lω[Z1,Z2] = LωZ1

LωZ2
− LωZ2

LωZ1
. SupposeL is a maximal connected submanifold ofM

which is tangent to this distribution, more preciselyTxL = ζg(x)
⊥ for all x ∈ L. Since we

have 0= (LωZψ̂(X))(x) = 〈Txψ · Zx + ω(Zx)ψ(x),X〉, we see thatψ(L) ⊆ R+ · ψ(x0)

for anyx0 ∈ L. Howeverψ need not be constant alongL.
Let gL := {Y ∈ g : ad∗

Yψ(x0) = 0}, which does not depend onx0 ∈ L. By the
equivariance ofψ , these are precisely thoseY for which ζY is tangential toL. SinceL is
maximal, the connected subgroup ofG corresponding togL leavesL invariant.

Theorem 1. Let G be a finite dimensional Lie group acting symplectically on an l.c.s.
manifold(M,Ω,ω) and assume that the action admits an equivariant moment mapping
ψ . SupposeL is a maximal connected submanifold of M withTxL = ζg(x)

⊥. LetGL be a
subgroup ofGwhich preservesL and hasgL as Lie algebra, and assume thatGL acts freely
and properly onL. ThenPL := L/GL admits a unique (up to conformal equivalence) l.c.s.
structure(Ω̄, ω̄), such that(L, i∗Ω, i∗ω) ∼ (L, π∗Ω̄, π∗ω̄), wherei : L ↪→ M denotes
the inclusion andπ : L → PL denotes the projection.
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Proof. Since the action is free and properπ : L → PL is a principleGL-bundle. LetU
be an open covering ofPL and forU ∈ U , let sU : U → L be local sections ofπ . Define
Ω̄U := s∗U i

∗Ω andω̄U := s∗U i
∗ω. We claim that(U, Ω̄U , ω̄U ) is l.c.s. for everyU ∈ U .

Obviously dω̄U = 0 and d̄ωU Ω̄U = 0. To see thatΩ̄U is non-degenerate, letYz ∈ TzPL

and suppose 0= Ω̄U (Yz, Zz) = i∗Ω(TzsU · Yz, TzsU · Zz) for all Zz ∈ TzPL. Since
iζX i

∗Ω = 0 for all X ∈ gL, we conclude thatΩ(TzsU · Yz, Ts(z)L) = 0. In other words,
TzsU · Yz ∈ (TsU (z)L)⊥ = ζg(sU (z)) and thusTzsU · Yz = 0, i.e.Yz = 0.

Next we will show that(i∗Ω, i∗ω)|π−1(U) ∼ π∗(Ω̄U , ω̄U ). So definef : π−1(U) → G

by lf (x)(x) := sU (π(x)), anda ∈ C∞(π−1(U),R+) by a(x) := af (x)(x). We claim
that π∗Ω̄U = (1/a)i∗Ω|π−1(U) and π∗ω̄U = i∗ω|π−1(U) + (da/a). Indeed, we have
Tx(sUπ) · Zx = Txlf (x) · Zx + V for a verticalV ∈ TsU (π(x))L. Sincei∗Ω vanishes on
vertical vectors, we get

(π∗Ω̄U )(Zx, Z′
x) = (sUπ)

∗i∗Ω(Zx,Z′
x) = i∗Ω(Tx(sUπ) · Zx, Tx(sUπ) · Z′

x)

= i∗Ω(Txlf (x) · Zx, Txlf (x) · Z′
x) = i∗l∗f (x)Ω(Zx, Z

′
x) = 1

a(x)
i∗Ω(Zx,Z′

x),

i.e. π∗Ω̄U = (1/a)i∗Ω|π−1(U). Moreover, we havef (gx) = f (x)g−1 for g ∈ GL, and
thereforea(gx) = (1/ag(x))a(x), where we usedahg(x) = ag(x)ah(gx). From this, we
obtain

iζY (x) da = ∂

∂t

∣∣∣∣
0

(
1

aexp(tY)(x)
a(x)

)
= −i∗ω(ζY (x))a(x),

i.e. (π∗ω̄U − i∗ω − (da/a))(ζY ) = 0 for all Y ∈ gL. Remains to check this equation on
‘horizontal’ vector fields. Sincef (sU (z)) = e we haves∗Ua = 1 and thus

(lgsU )
∗
(
i∗ω + da

a

)
= s∗U

(
i∗ω + dag

ag
+ dl∗ga
l∗ga

)
= s∗U

(
i∗ω + da

a

)
= ω̄U .

Since(lgsU )∗(π∗ω̄U ) = ω̄U , we obtainπ∗ω̄U = i∗ω|π−1(U) + (da/a). If V ∈ U , then we
get

(Ω̄V , ω̄V )|U∩V = s∗V i
∗(Ω,ω)|U∩V ∼ s∗V π

∗(Ω̄U , ω̄U )|U∩V = (Ω̄U , ω̄U )|U∩V

By the construction described in the first paragraph, we obtain a unique l.c.s. structure
(Ω̄, ω̄) on PL, such that(Ω̄, ω̄)|U ∼ (Ω̄U , ω̄U ) for all U ∈ U . Moreover, we have
π∗(Ω̄, ω̄)|π−1(U) ∼ i∗(Ω,ω)|π−1(U) for all U ∈ U and henceπ∗(Ω̄, ω̄) ∼ i∗(Ω,ω).
Uniqueness is also clear for if(Ω ′, ω′) is any l.c.s. structure onPL with π∗(Ω ′, ω′) ∼
i∗(Ω,ω), then

(Ω ′, ω′)|U = s∗Uπ
∗(Ω ′, ω′) ∼ s∗U i

∗(Ω,ω) = (Ω̄U , ω̄U ),

and so(Ω ′, ω′) ∼ (Ω̄, ω̄). �

Suppose(M,Ω,ω) ∼ (M,Ω ′, ω′) with Ω ′ = (1/a)Ω andω′ = ω + (da/a). Then
Diff ∞(M,Ω,ω) = Diff ∞(M,Ω ′, ω′) and Ham(M,Ω,ω) = Ham(M,Ω ′, ω′). More-
over,ψ is an equivariant moment mapping for(Ω,ω) iff (1/a)ψ is an equivariant moment
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mapping for(Ω ′, ω′). Since the orthogonal relation is the same for both l.c.s. structures
a submanifoldL satisfies the conditions of Theorem 1 for(Ω,ω) iff it does for (Ω ′, ω′).
Moreover, we haveg′L = gL. So the reduced spaces(PL,Ω,ω) and(P ′

L,Ω
′, ω′) are the

same, up to conformal equivalence. Leta ∈ C∞(M,R) be such thatω = (da/a), locally
aroundx0 ∈ L. ThenL locally given as{x : (1/a)ψ(x) = (1/a)ψ(x0)}. If (M,Ω,ω) is
symplectic, i.e.ω = 0, then this construction yields of course ordinary symplectic reduction
[3,7].

6. Examples

Let G be a discrete group acting freely and properly on an l.c.s. manifold(M,Ω,ω),
such thatlg ∈ Diff ∞(M,Ω,ω) for all g ∈ G. Theng = 0,ψ = 0 is an equivariant moment
mapping, and the only possible choice forL isL = M. If we chooseGL = G, thenPL =
M/G carries an l.c.s. structure. Notice that even if we start with a symplectic manifold,M/G

need not be conformally equivalent to a symplectic manifold. For example, let(M,Ω,ω)

be an l.c.s. manifold, letπ : M̃ → M be a normal covering such thatω̃ := π∗ω becomes
exact, and setΩ̃ := π∗Ω. Then (M̃, Ω̃, ω̃) is conformally equivalent to a symplectic
manifold andG, the group of deck transformations, satisfieslg ∈ Diff ∞(M̃, Ω̃, ω̃) for
all g ∈ G. ObviouslyPL = M̃/G = M and (Ω̄, ω̄) ∼ (Ω,ω). The smallestM̃ one
can take is the covering corresponding to the kernel of the homomorphismπ1(M) → R,
σ 7→ ∫

σ
ω.

Another example is connected with physical applications. In [9], the following l.c.s.
reduction is applied in several dynamical systems. Let(M,Ω,ω) be an l.c.s. manifold,
andf ∈ C∞(M,R) be a Hamiltonian function. One considersF = ]df and a smooth
level setMc = {x ∈ M : f (x) = c}, and one assumes thatf does not vanish onMc.
Then, one obtains a reduced l.c.s. structure onM̂c = Mc/F . This structure enables to
get a conformally symplectic transversal derivative cycle. Then some symmetries of the
Lyapunov spectrum of this cocycle appear. For details, see [9].

7. Hamiltonian system on the reduced space

First, we consider the general reduction and assume the notation of Proposition 1.

Proposition 4. Let PL be the reduced l.c.s. manifold by means of(L,E) and letu ∈
C∞(M,R) be a Hamiltonian such thatdωu vanishes onE and its flow Fl]dωu

t preserves L
and the bundle E. Then there exists a uniqueū ∈ C∞(PL,R) such that u extends̄u ◦π and
π∗]dωu = ]PL dω̄ū. In particular, Fl]dωu

t induces a flow of Hamiltonian automorphisms
onPL.

Proof. Since dωu|E = du|E = 0, the ū as above exists. For all̄v ∈ C∞(PL,R) and
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v ∈ C∞(M,R) with v|L = v̄ ◦ π , we then get

(]PL dω̄ū)(π(x))v̄ = {v̄, ū}PL(π(x)) = {v, u}M(x) = (]dωu)(x)v

= (]dωu)(x)(v̄ ◦ π) = (π∗]dωu)(x)v̄.

Here we use that, by assumption,]dωu is tangent toL. �
Now we consider the case of Lie group actions.

Lemma 1. Let G and H be two finite dimensional, connected Lie groups acting symplecti-
cally on an l.c.s. manifold(M,Ω,ω) with moment mappingsψG andψH . Then
1. agl∗gψH = ψH for all g ∈ G,

2. agl∗gψ̂H (Y ) = ψ̂H (Y ) for all Y ∈ h, g ∈ G,

3. T ψH · ζGX + ω(ζGX )ψH = 0 for all X ∈ g,
4. Lω

ζGX
ψ̂H (Y ) = 0 for all Y ∈ h,X ∈ g,

5. ζHh (x) ⊆ ζGg (x)
⊥ for all x ∈ M, and

6. {ψ̂G(X), ψ̂H (Y )} = 0 for all X ∈ g, Y ∈ h
are equivalent. Moreover, each statement is equivalent to the corresponding statement with
the rôles of G and H exchanged. If these equivalent conditions are satisfied, then[ζGX , ζ

H
Y ] =

0 for all X ∈ g, Y ∈ h and the actions of G and H commute.

Proof. FromΩ(ζGX , ζ
H
Y ) = −Lω

ζGX
ψ̂H (Y ) = {ψ̂G(X), ψ̂H (Y )}, we obtain the equivalence

of (4)–(6). Since andLωZψ̂(Y ) = 〈T ψ ·Z+ω(Z)ψ, Y 〉 these are equivalent to (3). (1) and
(2) are the infinitesimal versions of (3) and (4). The equivalence to the statements with the
rôles ofG andH exchanged is obvious from the symmetry of (5) or (6). From (6), we also
get [ζGX , ζ

H
Y ] = −]dω{ψ̂G(X), ψ̂H (Y )} = 0, i.e. the actions ofG andH commute. �

Assume that the equivalent conditions of Lemma 1 are satisfied and supposeL satisfies
the assumptions of Theorem 1. ThenζHY is tangential toL and thus at leastH◦, the id
component ofH , leavesL invariant.

Theorem 2. Let (M,Ω,ω), G, L andGL satisfy the conditions of Theorem1. Moreover,
let H be another finite dimensional Lie group, acting symplectically on(M,Ω,ω) with
equivariant moment mappingψH , such thatagl∗gψH = ψH for all g ∈ G. Finally assume
that the actions of G and H commute and suppose that H leaves L invariant. Then the
H-action descends to a symplectic action onPL, which has an equivariant moment mapping
naturally induced fromψH .

Proof. Since the action ofG andH commute the action ofH descends to an action̄l on
PL. Moreover, we have

π∗ l̄∗h(Ω̄, ω̄) = l∗hπ
∗(Ω̄, ω̄) ∼ l∗hi

∗(Ω,ω) = i∗l∗h(Ω,ω) ∼ i∗(Ω,ω),
and thus the uniqueness part of Theorem 1 yieldsl̄∗h(Ω̄, ω̄) ∼ (Ω̄, ω̄), i.e.H acts sym-
plectically onPL. Now let a ∈ C∞(L,R+) be such thatπ∗Ω̄ = (1/a)i∗Ω andπ∗ω̄ =
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i∗ω+(da/a). Fromagl∗gψH = ψH andagl∗ga = a for allg ∈ GL, we obtainl∗g((1/a)ψH ) =
(1/a)ψH onL, and thus(1/a)ψH descends tōψH ∈ C∞(PL, h∗). Moreover, we have

π∗(āhl̄∗hψ̄H ) = (π∗āh)l∗h

(
1

a
ψH

)
= Ad∗

h−1

(
1

a
ψH

)
= π∗(Ad∗

h−1ψ̄H ),

and hencēψH is equivariant. Since we have

π∗ dω̄ ˆ̄ψH(Y ) = dπ
∗ω̄
(

1

a
ψ̂(Y )

)
= iζHY

π∗Ω̄ = π∗iζ̄HY Ω̄,

ψH is a moment mapping. �

SupposeG is connected and letL satisfy the conditions of Theorem 1. Letf be a
Hamiltonian function,H = R acting via the flow of]dωf . Thenf is an equivariant
moment mapping. Supposeagl∗gf = f for all g ∈ G, or equivalentlyLω

ζGX
f = 0 for all

X ∈ g. Then by Lemma 1, all assumptions of Theorem 2 are satisfied, and one obtains an
induced Hamiltonian system onPL.
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