‘H
JOURNAL OF

é@ GEOMETRY ao
PHYSICS

ELSEVIER Journal of Geometry and Physics 37 (2001) 262-271

Reduction for locally conformal
symplectic manifolds

Stefan Halle?!, Tomasz Rybick?-*

a |nstitute of Mathematics, University of Vienna, Strudlhofg. 4, A-1090 Vienna, Austria
b Department of Applied Mathematics at AGH, AL. Mickiewicza 30, 30-059 Cracow, Poland

Received 16 May 2000

Abstract

It is shown how one can do symplectic reduction for locally conformal symplectic manifolds,
especially with an action of a Lie group. This generalizes well-known procedures for symplectic
manifolds to the slightly larger class of locally conformal symplectic manifolds. The whole setting
is very conformally invariant. © 2001 Elsevier Science B.V. All rights reserved.

MSC:53D20
Subj. Class.Dynamical systems; Differential geometry

Keywords:Locally conformal symplectic manifolds; Symplectic reduction

1. Introduction

The geometry of locally conformal symplectic (l.c.s. for short) structures generalizes the
symplectic geometry. Such structures occur naturally in the theory of Jacobi manifolds,
as any even-dimensional leaf of the distinguished foliation of a Jacobi manifold is I.c.s.,
cf. [2]. In particular, any transitive even-dimensional Jacobi manifold is actually an I.c.s.
manifold. The l.c.s. manifolds may be regarded as natural phase spaces in the Hamiltonian
mechanics [8]. For instance, in [9], the symmetry of the Lyapunov spectrum in locally
conformal Hamiltonian systems is studied. The authors of [9] present several examples and
show that Gaussian isokinetic dynamics, Nosé—Hoovers dynamics and other systems can
be viewed as locally conformal Hamiltonian systems.
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The aim of this note is to show that, in regular cases, the symplectic reduction is possible
for I.c.s. manifolds. The most abstract reduction principle states that every coisotropic
submanifold of a symplectic manifold is foliated by isotropic leaves and if the leaf space is
a manifold it carries again a symplectic structure. In the paper of Marsden and Weinstein
[7], it has been formalized the fact that if andimensional symmetry group acts on a
Hamiltonian system, then the number of degrees of freedom can be redugedrnythe
dimension of the phase space is reduceddbfftie position and the momentum coordinates).
We show that this is still true for I.c.s. manifolds. Moreover, the reduction process preserves
the conformal equivalence class of an Il.c.s. structure. An open problem is how to treat
singular reductions (cf. [1]) in the I.c.s. case.

2. Locally conformal symplectic manifolds

For a closed 1-forrw € 21(M) and a vector fiel € X(M) we define @ : 2*(M) —
2*L(M) by e := da+wAa,andLy : 2%(M) — 2*(M)by L%« := Lya+o(X)a.
The well-known formulas 4d” = 0, LYLy — LYLy = Ly y}, Ly d” —d”Ly =0,
LYiy —iyLy = ijx,y) and dix 4+ ix d” = L§ remain true. Moreover, one has the

derivation like formulas

A2 (@ A B) = d”ta A B+ (=D)la A d¥28,

LY 2@ AB) =L a A B +a A LPB.

Anl.c.s. manifold is atripleM, 2, ), where2 € 22(M) is non-degenerate, € 21(M)
is closed and 452 = 0. If dim(M) > 2, thenw is uniquely determined by2. Two |.c.s.
structureq£2, w) and(£2’, ") are called conformally equivalent (we will writg2, w) ~
(£2', ")) if there exists a positive functiansuch that2’ = (1/a)$2 ande’ = w+(da/a) =
o + dIna. Notice that, if dim(M) > 2, the second equation is a consequence of the first.
Suppose, we have a manifoM, an open covering/ of M and on everyU € U an
l.c.s. structurg 2y, wy), such that( 2y, wy)|lunvy ~ (v, wv)|lyny forall U,V € U.
Then there exists, up to conformal equivalence, a unique I.c.s. stry€2uyee) on M with
(82, w)|ly ~ (2y,wy) forall U € U. It can be constructed as follows. For every gaijr
V e U there exists a functiomyy : U NV — RT, such that2y |ynv = (1/auv) v |uny
andwy |yny = wv|unv + (dayy/ayy). Obviously, we haveyyayw = apwonUNVNW.
In other words{ayy} is a 1-cocycle in théech-cohomology of the she@f°(., R*). Since
this sheaf is fine, and hence acyclic, every cocycle is a coboundary, i.e. there exist functions
by : U — R* with ayy = by /by onU N V. Now one definex2|y := (1/by)L2y and
wly ‘= wy + (dby /by) [5].
By Diff (M, §2, w) we denote the group of all diffeomorphisms, which preserve
(£2, ) up to conformal equivalence. The corresponding Lie algebra of vector fields is

X(M, 2, 0) ={X € X(M) : L} $2 = cx$2 for some locally constanty },

cf. [4].
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C*° (M, R) becomes a Lie algebra with the following bracket

(f1, fo) i= QA f1, 207 f) = Lo, fr = — Lo, o

Here tt denotes the inverse of whereb : TM = T*M given by X — ix2 is a
canonical vector bundle isomorphism sireds non-degenerate. We hayd®{ 11, f2} =
—[¢d” f1,4d” f2]. So

Ham(M, 2, ») = {#d°f : f € C®°(M, R)}

is a subalgebra ct(M, 2, w), and
HO, (M) — €M, R)"S Ham(M, 2, )

is, up to a sign, a central extension of Lie algebras. H&fg M) denotes the cohomology
with respect to the differential’d especially

HY, (M) = (f € C®°(M,R) : d”f = 0}.

Note that if (£2/, ') ~ (2, w), i.e. 2’ = (1/a)$2 ande’ = w + (da/a), then{f, g} =
(1/a){af, ag}. Moreover, one haffg, 1} = f{g, h} + {f, h}g — foLswh.

3. Reduction for l.c.s. structures

We begin with the following general definition of reduction essentially due to Marsden
and Ratiu [6].

Definition. Let(M, 2, w) be anl.c.s. manifold, and It -}, be the corresponding bracket

onC>® (M, R).Apair(L, E),where : L C M isasubmanifold and is avector subbundle

of TM|., is said to be aeductive structuréf the following is fulfilled:

1. ENTLis tangent to a foliation of. whose leaves are the fibers of a submersion
L — P;r;

2. i*w(X) = 0 for any X tangent to the fibers of;

3. for anyu, v € C*°(M, R) such that d, dv vanish onEd®{u, v},; vanishes ort as
well.

Furthermore(M, L, E) is called areducible tripleif there is an |.c.s. structur@2, @) on

Py, with the Poisson brackét, -} p, such that for any local’*> functions f, g on Py, and

any local extensions, v of f o 7, g o 7, respectively, such that botlYd and d’v vanish

on E, one has the relation

{M,U}M oi = {f’ g}PL oT.

(P, 2, @) is then areduced |.c.s. manifold

A standard reductive structure arises in the following situation. (Mt 2, w) be an
I.c.s. manifold such that for a submanifald L ¢ M rank(i*£2) is constant. Then, it is
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apparent that for th&-orthogonal spac&L* of TL, TL+ N TL is integrable. Hence, if the
resulting foliation is given by a submersian: L — P; andi*w vanishes oTL-NTLthen
(L, TLYNTL) is areductive structure. By Proposition 1 below we see(t¥atL, TL-NTL)
is a reducible triple as well singgAnn(TLY) = (TLYH)L = TL.

As in the symplectic and Poisson case [6], we have the following proposition.

Proposition 1. Let (M, 2, w) be an l.c.s. manifold and suppos$E, E) is a reductive
structure. TheniM, L, E) is a reducible triple if and only if

#(ANNE) C TL+ E. 1)

Moreover, if(M, 2, w) ~ (M, 2/, &) then(Pr, 2, ®) ~ (P, 2/, &), i.e. the conformal
equivalence relation is preserved

Proof. Assume thatP;, 2, ®) is a reduced |.c.s. afM, 2, ). Letx € L, « € AnnEy,
andg € Ann(E, + T,L) = (Ann E,) N (AnnT,L). By (1) there is« € C*°(M, R) such
dyu = o and di|g = 0. Now due to (2) u = « and d’u vanishes orE. Likewise, we
choosev € C*°(M, R) vanishing onL with d,v = g and d|g = 0. Hence in view of (2)
d?v = g and d’v vanishes orE. Consequently, by the definition of reducible triple, we
have

Bfa) = (dYv)(Fdu)
= (dyv)(BdYu) = (Lygeuv)(x) = {v, utpm(x) = {0, f}(m(x))p, =0,

wheref € C*°(Pr, R) such thau extendsf o . This gives Eq. (1).

Conversely, suppose Eq. (1) is fulfilled andfeg € C*°(P., R). Forfixedx € L choose
extensionst, v € C*°(M,R) of f o, g o 7, respectively, such that(x) = v(x) = 0
and di|g = dv|g = 0. This yields du, v}y|g = d”{u, v}y|g = 0 and, consequently,
{u, v}um|L is constant along fibers. We Igf, g} p, (w(x)) = {u, v}y (x) which will ensure
that(M, L, E)isareducible triple. The only thing to check is the independence of the choice
of u andv. If & also extends o 7 with ii(x) = 0 and ?u|g = 0, we get(u — )|, = 0.
Therefore, d@ = du on E + TL which, in view of Eq. (1) implies

{u, vin (x) = (dYw) (@ dYv) = (dPa) (@ dyv) = {i, viy (x).

By the antisymmetry, the definition is also independent of the choiae @he second
assertion is obvious. O

4. The moment mapping

Let G be a finite dimensional Lie group acting from the left &h We will write [, :
M — M for the action of the element € G. For the fundamental vector fieldg we
have{ix,y) = —[¢x, ¢yl and CAdg—lx = l;;x. In the sequel we will always assume that
G acts symplectically, i.el, € Diff *(M, 2, w) for all g € G. If G is connected this
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is equivalent tazy € X(M, £2, w) for all X € g, whereg is the Lie algebra of5. Then
for everyg € G there exists a positive functiar, on M, such thatz2 = (1/ag)$2 and
l;:a) = w + (dag /ag). Obviously, we haveng = a, (l;ah). So we have a righr-action on
C>(M,R) given byg - f 1= az(l; f). If one differentiates; 2 = (1/a,)£2 with respect
to X € g, one obtaingd/d1)|odexpix)y = w({x) — cx. So the correspondingraction on
C®M,R)isX - f = L‘;Xf — cx f. Moreover,d® : C*(M,R) — Ham(M, 2, w) is

equivariant, i.e.f d”(agly f) = [31d” f andg d‘”(L‘;Xf —cx f) =[¢x, 8d?f].

Proposition 2. Let G be a connected Lie group, and supposegfeetion is Hamiltonian,
i.e.sx € Ham(M, 2, w) forall X € g. Leh/? i g — C®(M,R) be alinear lift of¢, i.e.

#d“y(X) = ¢x for all X € g. Moreover, lety : M — g* be defined byy (x), X) =

IZf(X)(x), whereX € g andx € M. Then the following conditions

1. ¥ is a homomorphism of Lie algebras

2. v is equivariant, i.eyr (Ad,-1X) = a 3y (X), forall g € G, X € g,

3. v is infinitesimal invariant, i.ey (—ady X) = L‘;y&(X) forall X,Y e g,

4, Ad;_lw = aglgy forall g € G, and

5. —adyy =Ty -ty +o@y)y foral Y eg

are equivalent

Proof. We haveys(—ady X) = v ([X, Y]) and

LG X) = LYy, 0 0 (X) = (0. (V).

So (1) is equivalent to (3), and sin€gis connected (3) is equivalent to (2). Notice that
since the action is Hamiltonian we havg = 0 and so (3) is really the infinitesimal
version of (2). Moreover, (4) is obviously equivalent to (5). Next we hage ady X) (x) =
(—ady ¥ (x), X), and

LY Y (X)(x) = Ly Y (X) () + 0 (&y )P (X) (x) = Ly (¥ (x), X)
+o Ly ()Y (), X) = (Teyr - ¢y (), X) + (@ @y ()P (x), X),

and thus (5) is equivalent to (3). O

A mappingy as in Proposition 2 is called a moment mapping, and it is called equivariant
if the five equivalent conditions are satisfied.

Proposition 3. Lety : g — Ham(M, 2, w) be an anti homomorphism of Lie algebras. If
Hz(g; H(?w(M)) =0, Whereng(M) is considered as triviaj-module, then there exists
aliftg : g - C®°(M,R),i.e.¢pis ahomomorphism of Lie algebras apd® o ¢ = ¢.
Moreover, if there exists a lift, then the set of all lifts is parameterized byg; ng (M)).

Proof. Letg : g — C*(M, R) be a linear lift ofp and set

c(X,Y) = g([X, Y]) — {$(X), (Y)} € HJ,(M).
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Then one easily showk = 0. SinceH?(g; HJ,(M)) = 0 there exist$ with §b = c, i.e.
c(X,Y) = 8b)(X,Y) = —b([X, Y]). Now we definep : g — C®(M,R) by ¢(X) :=
@(X) + b(X). Then one immediately sees tlgats a homomorphism of Lie algebras and a
lift of .

To see the second assertion,gadenote a homomorphism of Lie algebras liftipgAll
other lifts are of the forng + b for someb : g — C*>°(M, R). Since we have

{9(X) +0(X), 9(Y) +b(V)} = {9(X), o(V)} = o([X, YD),

we see thap + b is a homomorphism of Lie algebras #f[X, Y]) =0 forall X,Y € g,
or equivalentlysh = 0, i.e.b € H(g; H,(M)). O

If g is semi-simple, then there always exists an equivariant moment mapping, since
H?(g; Hé)w(M)) = 0, by the second Whitehead lemma. Moreover, it is unique since
H(g; H,(M)) = 0, by the first Whitehead lemma.

If (M, 2, w) is an |.c.s. manifold which is not conformally equivalent to a symplectic
manifold, i.ew is not exact, then there always exists a unique equivariant moment mapping.
This is becausélgw (M) = 0 for non-exacto.

Suppose the l.c.s. structure is exact,2e= d”6, and the action preservési.e.L‘g’Xe =
cx0 for locally constant functionsy. Notice that this immediately impIielS?’XQ =cxS2.
Moreover,cx = 0 iff the action is Hamiltonian, and in this situatiair(X) = —ir 0 is an
equivariant moment mapping.

5. Lie group actions and reduction

Let G be a finite dimensional Lie group acting symplectically on an l.c.s. manifold
(M, 2, w). Assume that we have an equivariant moment mapging he vector fields
Z € X(M) which are$2-orthogonal to the orbits of; span an involutive distribution
on M. Indeed, since we hav@(¢cx, Z) = iz d°¥(X) = L%y (X), this follows from
Ly, 70 = LZ,L%, — L%,L% . Supposel is a maximal connected submanifold &f
which is tangent to this distribution, more precis&ly. = ¢4 (x)L forall x € L. Since we
have 0= (L (X)) (x) = (Ter - Zy + 0(Z) ¥ (x), X), we see thay (L) € R* - ¢ (x0)
for anyxg € L. Howevery need not be constant aloiig

Letg, == {Y € g : adj¥(xg) = 0}, which does not depend orp € L. By the
equivariance of/r, these are precisely thogefor which ¢y is tangential tal.. SinceL is
maximal, the connected subgroup®@fcorresponding t@; leavesL invariant.

Theorem 1. Let G be a finite dimensional Lie group acting symplectically on an I.c.s.
manifold (M, §2, w) and assume that the action admits an equivariant moment mapping
¥. Supposd. is a maximal connected submanifold of M wWithl. = gg(x)i. LetGy bea
subgroup of5 which preserves and hagy; as Lie algebra, and assume th@yg, acts freely

and properly onL. ThenP;, := L/G; admits a unique (up to conformal equivalence) I.c.s.
structure($2, @), such that(L, i*$2, i*w) ~ (L, n*§2, n*®), wherei : L — M denotes

the inclusion andr : L — P; denotes the projection
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Proof. Since the action is free and proper: L — P; is a principleG-bundle. Leti/

be an open covering d?; and forU € U, letsy : U — L be local sections af. Define
Qu = shi*2 anday = s}i*w. We claim that(U, 2y, @y) is |.c.s. for everyU € U.

Obviously doy = 0 and &V 2y = 0. To see that?y is non-degenerate, |8t € T, P,

and suppose G= Qu(Y,, Z,) = i*Q(T,sy - Y., Tosy - Z,) for all Z, € T,P. Since
iryi*2 = 0forall X e gz, we conclude thaf2(Tsy - Y, Ty;)L) = 0. In other words,
T.su - Yz € (Ty, L)t = ¢g(sy(2)) and thusTysy - Y. = 0,i.e.Y; = 0.

Next we will show thati* 2, i*w)|, -1y ~ 7*(R2u, @v). So definef : 7 ~1(U) — G
by I ¢ (x) = sy(r(x)), anda € C®(x~LU),R*) by a(x) := aru) (x). We claim
that 7*Q2u = (1/a)i*2|,-1yy andn*oy = i*w|,-1yy + (da/a). Indeed, we have
T (sym) - Zx = Txlfx) - Zx + V for a verticalV e Ty, r(x)) L. Sincei*$2 vanishes on
vertical vectors, we get

(T Qu)(Zx, Zy) = (sun)*i*R(Zy, Zy) = i*Q2(Ti(sym) - Zy, Te(sym) - Z))

: . 1
= i*Q(Telyr) - Zo Tel gy - Z3) = 115 R2(Z, Z}) = %z*sz(zx, z0),

e.n*Qy = (1/a)i*2|;-1y. Moreover, we havef (gx) = f(x)g~lforg € G, and
thereforea(gx) = (1/ag(x))a(x), where we usedng(x) = a,(x)a,(gx). From this, we
obtain

0

1 L
o o(m““)> = Tretroa,

ity (x) da =

i.e.(r*wy — i*w — (da/a))(¢y) = O forall Y € g,. Remains to check this equation on
‘horizontal’ vector fields. Sincg (sy (z)) = e we haves};a = 1 and thus

d da, dia d
(gsu)* <i*w + 7“) =5} (i*w + % + = ) =5} (i*a) + 7“) = ay.
s Lk

Since(lgsy)* (m*oy) = @y, we obtaint*oy = i*w|, -1y + (da/a). If V € U, then we
get

(v, ov)luny = syi* (2, w)|uny ~ syn*(Ru, ov)luny = (Ru, duv)luny

By the construction described in the first paragraph, we obtain a unique l.c.s. structure
(2, @) on Pr, such that(2, ®)|y ~ (Q2u,oy) for all U € U. Moreover, we have
T2, D) -1y ~ (R, 0)| -1y for all U € U and hencer*(2, @) ~ i*(2, w).
Uniqueness is also clear for {§2’, ') is any l.c.s. structure o, with 7*(2’, ') ~

i*(£2, w), then

(2, )y = sja*(2', o) ~ s5i* (2, w) = (Ru, &),
and so(2’, ') ~ (2, ®). O
SupposeM, 2, w) ~ (M, 2/, ") with 2’ = (1/a)$2 andw’ = w + (da/a). Then

Diff ®*(M, 2, ) = Diff *(M, ', ') and HamiM, 2, w) = Ham(M, 2’, »'). More-
over,y is an equivariant moment mapping f@e, ) iff (1/a)vy is an equivariant moment
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mapping for(£2’, »’). Since the orthogonal relation is the same for both Il.c.s. structures
a submanifoldL satisfies the conditions of Theorem 1 {2, w) iff it does for (2, »').
Moreover, we havg, = g;. So the reduced spaceB;, 2, w) and(P; , ', ') are the
same, up to conformal equivalence. ket C*(M, R) be such thab = (da/a), locally
aroundxg € L. ThenL locally given asix : (1/a)y(x) = (1/a)¥ (x0)}. If (M, 2, w) is
symplectic, i.ew = 0, then this construction yields of course ordinary symplectic reduction
[3,7].

6. Examples

Let G be a discrete group acting freely and properly on an I.c.s. manifdld, w),
suchthat, € Diff (M, 2, w) forall g € G. Theng = 0,y = 0is an equivariant moment
mapping, and the only possible choice fois L = M. If we chooseG; = G, thenP;, =
M/ G carries anl.c.s. structure. Notice that even if we start with a symplectic mandgid,
need not be conformally equivalent to a symplectic manifold. For example\ilef2, o)
be an |.c.s. manifold, let : M — M be a normal covering such théat:= 7*» becomes
exact, and sef? := 7*2. Then (M, £2, &) is conformally equivalent to a symplectic
manifold andG, the group of deck transformations, satisfigse Diff *(M, 2, &) for
all g € G. ObviouslyP;, = M/G = M and(£2,®) ~ (82, w). The smallest one
can take is the covering corresponding to the kernel of the homomorphiei) — R,

o [ o

Another example is connected with physical applications. In [9], the following I.c.s.
reduction is applied in several dynamical systems. (Mt 2, w) be an l.c.s. manifold,
and f € C*®(M, R) be a Hamiltonian function. One considefs= #df and a smooth
level setM¢ = {x € M : f(x) = ¢}, and one assumes thatdoes not vanish on/°.
Then, one obtains a reduced I.c.s. structureMh = M¢€/F. This structure enables to
get a conformally symplectic transversal derivative cycle. Then some symmetries of the
Lyapunov spectrum of this cocycle appear. For details, see [9].

7. Hamiltonian system on the reduced space
First, we consider the general reduction and assume the notation of Proposition 1.

Proposition 4. Let P; be the reduced I.c.s. manifold by means(bf E) and letu <
C*>(M, R) be a Hamiltonian such that”u vanishes orE and its flow Ff du preserves L
and the bundle E. Then there exists a unigue C*° (P, R) such that u extendso = and
4 d°u = #p, d?i. In particular, Flfdw“ induces a flow of Hamiltonian automorphisms
onPr.

Proof. Since ?u|r = du|g = 0, theiz as above exists. For all € C*°(P.,R) and
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v e C®(M,R)with v|;, = vom, we then get

(p, %) (T ()0 = {0, it} p, (T (x)) = {v, ubp (x) = (# d°u)(x)v
= (8d%u)(x)(V o ) = (. d”u)(x)v.
Here we use that, by assumptidrd®u« is tangent ta.. O

Now we consider the case of Lie group actions.

Lemma 1. Let G and H be two finite dimensional, connected Lie groups acting symplecti-
cally on an l.c.s. manifoldM, 2, w) with moment mappinggc andyx. Then

. Clgl;,kl/f[—] =yy forall g € G,

agliyp(Y) = yp(¥)forall Y e b, g € G,

. Tpo ;X +w(; YWy =0forall X € g,
. L‘{"GwH(Y) OforallY € h, X € g,
X

. Céq(x) - ggG(x)l forall x € M, and

Ve (X), ¥ (Y)y=0forall X e g, Y €

are equivalent. Moreover, each statement is equivalent to the corresponding statement with
the rbles of G and H exchanged. If these equivalent conditions are satlsfleﬂ;ﬂ]qrf ]=

Oforall X € g, Y € h and the actions of G and H commute

ovm.l;oa!vn—\

Proof. From2(¢g, ¢f )_—L‘”GwH(Y) {(¥rg(X), ¥y (Y)}, we obtain the equivalence

of (4)—(6). Since and.% w(Y) (Tw Z+w(Z)Y, Y) these are equivalent to (3). (1) and

(2) are the |nf|n|teS|maI versions of (3) and (4). The equivalence to the statements with the
réles of G and H exchanged is obvious from the symmetry of (5) or (6). From (6), we also
get k¢, ¢l = —gd°{¥G(X), ¥ (Y)} = 0, i.e. the actions of andH commute. [

Assume that the equivalent conditions of Lemma 1 are satisfied and supppeasisfies
the assumptions of Theorem 1. The,ﬁ is tangential toL and thus at leas#,, the id
component ofH, leavesL invariant.

Theorem 2. Let(M, 2, w), G, L andG, satisfy the conditions of TheorelmMoreover,

let H be another finite dimensional Lie group, acting symplectically&h $2, w) with
equivariant moment mappingy, such thata,l; vy = ¢y for all g € G. Finally assume

that the actions of G and H commute and suppose that H leaves L invariant. Then the
H-action descends to a symplectic action® which has an equivariant moment mapping
naturally induced fromy .

Proof. Since the action off and H commute the action off descends to an actidron
Pr.. Moreover, we have

TR, @) = " (2, @) ~ iR, 0) = i*[[(R2, 0) ~ (2, »),

and thus the uniqueness part of Theorem 1 yigld®, @) ~ (2, @), i.e. H acts sym-
plectically onP;. Now leta € C*®(L,R") be such thatr*2 = (1/a)i*2 andn*o =
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i*w+(da/a). Froma,lgyy = Y andaglya = aforallg € G, weobtainy ((1/a)yn) =
(1/a)yy on L, and thus(1/a)y gy descends tgy € C*®(Pr, h*). Moreover, we have

7 @nly ) = G ap)l; <§WH> =Ad;_; (%WH) = 7*(Ad; _1¥m),
and hence/y is equivariant. Since we have
Ay (V) = d’””‘)( w(y)) = it 2 = i 2,
Yy is a moment mapping. O

SupposeG is connected and let satisfy the conditions of Theorem 1. L¢tbe a
Hamiltonian function,H = R acting via the flow offd® f. Then f is an equivariant
moment mapping. Supposgl, f = f forall g € G, or equwalentlyL '« f = 0 for all

X € g. Then by Lemma 1, all assumptions of Theorem 2 are satlsfled and one obtains an
induced Hamiltonian system afy. .
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